Feature Selection by Mining Optimized Association Rules based on Apriori Algorithm

نویسندگان

  • K. Rajeswari
  • K. Z. Mao
  • B. Sahiner
  • H. P. Chan
  • N. Petrick
  • R. F. Wagner
  • K. L. Priddy
  • J. M. Steppe
  • K. W. Bauer
چکیده

This paper presents a novel feature selection based on association rule mining using reduced dataset. The key idea of the proposed work is to find closely related features using association rule mining method. Apriori algorithm is used to find closely related attributes using support and confidence measures. From closely related attributes a number of association rules are mined. Among these rules, only few related with the desirable class label are needed for classification. We have implemented a novel technique to reduce the number of rules generated using reduced data set thereby improving the performance of Association Rule Mining (ARM) algorithm. Experimental results of proposed algorithm on datasets from standard university of California, Irvine (UCI) demonstrate that our algorithm is able to classify accurately with minimal attribute set when compared with other feature selection algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Approaches to Analyze Gasoline Rationing

In this paper, the relation among factors in the road transportation sector from March, 2005 to March, 2011 is analyzed. Most of the previous studies have economical point of view on gasoline consumption. Here, a new approach is proposed in which different data mining techniques are used to extract meaningful relations between the aforementioned factors. The main and dependent factor is gasolin...

متن کامل

Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures

Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...

متن کامل

Mining the Banking Customer Behavior Using Clustering and Association Rules Methods

  The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily t...

متن کامل

A Text Mining Technique Using Association Rules Extraction

This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing o...

متن کامل

A Survey on Association Rule Mining Using Apriori Based Algorithm and Hash Based Methods

Association rule mining is the most important technique in the field of data mining. The main task of association rule mining is to mine association rules by using minimum support thresholds decided by the user, to find the frequent patterns. Above all, most important is research on increment association rules mining. The Apriori algorithm is a classical algorithm in mining association rules. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015